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Velocity fluctuations are calculated near an interface between a turbulent region and 
a stably stratified layer, and in the absence of mean shear. Based on the observation 
that the energy dissipation rate is finite in the turbulent region, a linear theory is 
constructed to match the given Eulerian (not Lagrangian) spectra of the turbulence 
in the turbulent region to the wave motion in the stable layer. 

The theory shows that eddies with frequency of the same order as the buoyancy 
frequency N of the stratified layer are least affected by the stratification. The mean 
square vertical velocity 2+ 0 when N +  00, while 2 is greatest at the interface when 
NLH/uH x 2 ; U, and L, are respectively the velocity scale and longitudinal integral 
scale in the interior of the turbulent layer. In the stratified layer, since waves with 
frequency w > N decay rapidly with distance z from the interface, the high-frequency 
parts of the spectra fall-off sharply, a striking feature of the atmospheric measure- 
ments of Caughey & Palmer (1979). In &is inviscid model waves with frequency 
w < N propagate in the stratified region without decay. The vertical integral scale 
LLW) is found to vary significantly with N ,  reaching a maximum at the interface when 
NLH/uH x 1. The wave energy flux (F,) is a maximum when NLH/uH x 6, a value 
frequently observed in the atmosphere. 

In the limit of large stratification ( N +  co), the theory shows that the effect of the 
stable layer on the turbulent region is the same as that of a rigid surface moving with 
the flow at the same mean velocity (i.e. the solution of Hunt & Graham 1978). Then 
F,+O and, at the interface, LLW)+O. In the limit of small stratification (N+O) the 
vertical motion in the turbulent region decreases in intensity near the interface and 
irrotational motions are induced in the slightly stable layer (i.e. the same result as 
Phillips 1955). 

1. Introduction 
There are many natural flows where regions of turbulent motion adjoin regions of 

stably stratified fluid in which there is no local production of turbulence. These 
include the upper part of the atmospheric convective boundary layer which is capped 
by an inversion, the oceanic mixed layers, at the base of which is the thermocline, 
and stellar convection zones bounded by stably stratified regions. The interaction 
between the turbulent region and stratified layers needs to be better understood 
because it affects and often controls the movement of the interface dz,/dt and fluxes 
of momentum F and scalar quantities F, across the interface. For instance, in 

t Present address : Department of Atmospheric Physics, Clarendon Laboratory, Parks Road, 
Oxford. 
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large-scale numerical-model studies of the atmosphere, these quantities are estimated 
from physical arguments and experimental data in terms of various local physical 
quantities. 

It is convenient to subdivide the general class of turbulent flows confined by 
stratification into three main types of flow, all of which occur frequently. (We assume 
there is no potential temperature gradient in the turbulent layer.) 

(i) The stable layer has a uniform density or temperature gradient as in the 
experiments of Willis & DeardorR (1974), and the atmospheric measurements of 
Caughey & Palmer (1979). There is no mean shear. 

Stratified Mixine at interface 

Stratified Fine filaments 

Breaking Stratified 
internal waves 

(C) 

I I Turbkent I 

(4 

' Turbulent 

FIGURE 1 .  Mechanisms of entrainment. (a) Mixing due to fluctuating velocities at an interface. (a) 
Fine filaments entrained by energetic eddies. (c) Waves breaking in stratified fluid. (d) Engulfment 
of fluid of weak stratification. 

(ii) There is an intensely stratified layer marking the edge of the turbulent layer 
with fluid of lower stratification (which may be neutral) beyond, as for example in 
the atmospheric measurements of Caughey, Crease & Roach (1982). There is no mean 
shear. 

(iii) Either of the above cases with mean shear. This shear is usually most intense 
when i t  is associated with a narrow stably stratified layer (Brost, Wyngaard & 
Lenshow 1982). 
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A large number of laboratory experiments have been performed to measure the 
rate of growth of the thickness z, of the turbulent layer and the fluxes for each of 
the above cases. Both these kinds of measurements are often expressed as ‘entrainment 
velocities’ E, where E = dz,/dt or E = 4 / A S ,  where AS is the change in the value 
across the layer. Numerous attempts have been made to relate these entrainment 
velocities to the bulk properties of the flow (e.g. Kato & Phillips 1969; Kantha, 
Phillips 6 Azad 1978; Price 1979; Turner 1973; Willis & DeardorfT 1974; Piat & 
Hop finger 198 1 ) . 

Stratified region 

Interface 

Turbulent region 

Homogeneous turbulence as z+- 00 

Lengthscale LH. velocity scale uH 

(b) Stratified Stratified 

Turbulent 

Eddies moving 
randomly along the interface 

Turbulent 
Eddies rising or falling 

FIGURE 2. (a) Pictorial representation of the flow field described by the theory. (6) Physical picture 
of the use of the different frequency spectra; the eddies are shown at the times to, t,, t ,  and 
to < t ,  < t , ;  (i) Lagrangian spectrum: eddies rising or falling. (ii) Eulerian spectrum: eddies 
randomly moving along the interface. 

Four distinct mechanisms have been proposed for the entrainment process 
(figure 1)  (though they have never been systematically compared). 
(a) Turbulent eddies impinge on the interface and generate sufficiently large 

fluctuating-velocity gradients at the interface that the local Richardson number 
g(i3??/az)/??(au/az)2 is small enough for Kelvin-Helmholtz billows to grow and break 
and induce molecular mixing. 

(6) With strong stratification and energetic turbulence, eddies impinging onto the 
interface distort it sufficiently that fine filaments of the stratified fluid layer are 
entrained into the turbulent region, where again molecular diffusion completes the 
mixing process (Linden 1973). Linden hypothesized that eddies are similar to vortex 
rings and then, by experiment and approximate analysis, he was able to estimate 
entrainment rates across a density discontinuity. 

(c) Turbulent eddies distort the interface and set up internal waves in the stratified 
layer whose energy and form depend on the stratification. For a uniformly stratified 
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layer (figure 2a),  the waves propagate energy away from the interface but the wave 
amplitude at  the interface may be large enough to induce mixing. If the stratified 
layer is strong near the interface and weak or non-existent far above it, then trapped 
and resonant waves of large amplitude can be induced by quite weak turbulence. 

(d )  With weak stratification the turbulent layer can also grow and entrain by the 
same processes as occur at  the edge of a turbulent boundary layer or wake in neutral 
stratification; the large eddies in the turbulent layer induce large random motions 
in the external layer leading to the engulfment of external fluid. In the limit of zero 
stratification, the velocity fluctuations in the laminar layer have been shown to be 
irrotational and described by Phillips’ (1955) theory. 

In  this paper we develop a linear analysis to describe the velocity fluctuations near 
a single interface separating a uniformly stratified layer from a turbulent layer, i.e. 
we investigate class (i) of the three classes of flows outlined above, in which a 
turbulent region is confined by stratification. A subsequent paper will describe 
analysis of the second class of flows. We also compare the results of the analysis with 
observations of velocity fluctuations. We note that linear analysis may be appropriate 
for such a comparison, because much of the time these fluctuations are associated 
with small deformations of the interface. But the linear analysis is not appropriate 
for calculating the nonlinear mixing processes involved in entrainment because these 
are often associated with large deformations of the interface. However, the theory 
of this and the subsequent paper may provide a method for identifying under what 
circumstances which of the mechanisms described above may control entrainment, 
since all the mechanisms are sensitive to the local fluctuating velocity field near the 
surface. 

The linear theory developed here is a modification of the model of Hunt & Graham 
(1978) for turbulence in a zero-mean-shear boundary layer. This model has been 
shown by Hunt (1984) to provide a good description of the turbulent structure in 
the lower part of the atmospheric boundary layer, where the turbulence impinges on 
the ground. Here we match the turbulence to wave motions in the stratified layer. 
Townsend (1966) and Stull (1976) calculated the wave motions above a convective 
layer, but simply assumed the form of the vertical velocity fluctuations at the 
interface. They did not attempt to match the convective turbulence to the wave 
motion. The data were not then available for any detailed test of the theory. 

2. Theory and analysis 
2.1. Assumptions, equations and general solution 

The structure we are considering is shown in figure 2(a). Both the turbulent and 
stratified layers are assumed to be travelling at a constant mean velocity which may 
or may not be zero. The turbulent layer is assumed to be neutral, and the stratified 
layer has constant buoyancy frequency N .  

2.1 .l .  Turbulent region 

In  this region the assumptions are similar to those of Hunt (1984). In the interior 
of the layer the turbulence is assumed to  be homogeneous and specified by the 
energy-spectrum tensor 

(Batchelor 1953), where ui, uj are fluctuating velocities. The observations in the 
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atmospheric boundary layer by Caughey & Palmer (1979) and Kaimal et al. (1976) 
show that the energy dissipation rate E is approximately constant with height. Hence 
assuming 

- = 0, ( 2 . 1 ~ )  

and since 8 = u ( 2 -  d2q2/dz2), where the vorticityt o = V x u and q2 = u: + ui + ui, 
then, as the Reynolds number uH LH/u + co, 

E = U d .  ( 2 . l b )  

a€ 
aZ 

_ _ _  

_ 

( 2 . l c )  
a 2  So, from ( 2 . l a ) ,  - = o  
az 

and the distortion of the small scales of turbulence is irrotational. 
Since the flow is incompressible, the simplest solution satisfying (2.1 a) is 

u = U(H) + u(S) ( 2 . l d )  

where dS) is an irrotational field and dH) is a homogeneous turbulence field. (Note 
that the superscript (H) is used to denote a variable function in the homogeneous 
region whereas subscript H is used to denote a constant.) 

From (2.1 d )  we have 
u = U(H)-Vq5, (2.1 e )  

where V2$ = 0. (2 .1 . f )  

Linear equations identical with (2.1 e )  and ( 2 . 1 f )  are obtained if the vorticity equation 
describing the turbulent motion is linearized, as shown by Hunt (1984).  He also 
discusses the nonlinear distortion of turbulent velocity which we have ignored in this 
analysis. This was estimated to have only a small effect on the vertical fluctuations, 
but to increase the horizontal fluctuations through stretching of the smaller eddies 
by the large eddies. 

2.1.2. StratiJied region z > 0 
In this region it is also assumed that we can neglect nonlinear terms. Then, making 

the Boussinesq approximation and taking coordinates moving with the mean flow, 
the equation for the vertical velocity component wS is 

(2 .2a)  

Assuming incompressibility, the horizontal components can then be expressed in 
terms of w by 

p- a2w = (”+”) 
azat a x 2  a y 2  p ,  

au ap av ap 
at ax at ay 

p-+- = 0, p-+- = 0 ,  

(2 .2b)  

(2 .2c)  

t In this section (2.1.1) w is used to denote the magnitude of the vorticity; in all other sections 

$ For the fluctuating velocities we use either ul, u2, us or u, v, w depending on which expressions 
it is used to represent the frequency of wave motions. 

are the most convenient. 
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where p is the mean density and p the pressure perturbation. By means of ( 2 . 2 ~ )  we 
obtain the Fourier transform of the vertical velocity t2 

-+ ;; (: - -1  ) ( K ; + K ; ) t 2 = 0 ,  ( 2 . 3 ~ )  

where 

and w is the intrinsic frequency of the wave motion. As z+ co the conditions are the 
outward radiation of energy for w < N and that w + 0 for w > N .  

2.1.3. At the interface 
The kinematic condition is that w is continuous at the interface. Also assuming 

that the pressure is continuous, from the dynamical equations i t  follows that aw/az 
is continuous (Goldstein 1931). 

The system of equations is closed by defining the joint wavenumber and frequency 
spectrum in homogeneous turbulence : 

In  homogeneous turbulence there have not even been measurements of the Eulerian 
frequency spectrum 

r m  

J -CO 

let alone x{~)(K, w ) ,  so we use a plausible argument due to Tennekes (1975) to propose 
an approximate form for x ~ ) ( K ,  w )  in terms of the specified wavenumber spectrum 
of the homogeneous turbulence @~F)(K). 

There are two main causes for the time variation in the velocity at a point moving 
with the mean$ow: the change of velocity of a fluid element (which occurs in the 
Lagrangian timescale 7L) and the random velocity of advection of fluid elements by 
the most energetic eddies (on a timescale 2/uH, where I is the lengthscale of the 
advected energy and uH the velocity scale of the turbulence). The former process leads 
to a ‘ Lagrangian’ frequency spectrum proportional to  ew-2 while the latter leads to  
an ‘ Eulerian ’ frequency spectrum 

( 2 . 5 ~ )  

where A is constant for a given i ,  j. 
I n  physical terms the result of the use of the ‘Lagrangian’ spectrum in the analysis 

would correspond to  a model of waves being produced by eddies rising or falling, 
whereas the result using the Eulerian spectrum corresponds to a model of waves being 
produced by eddies randomly moving horizontally along the interface (figure 2 b) .  The 
analysis presented here makes use of the Eulerian spectrum since it is more energetic 
a t  moderate-to-high frequencies (w > uH/LH) because the energy a t  frequency w is 
largely being induced by eddies of wavenumber 1x1 x w / u H .  Making use of the 
Eulerian spectrum (2.5a) the joint wavenumber and frequency spectrum should have 
the approximate form 

X l ? ) ( K , W )  = @lY’(K)d(W-UHk) ,  (2.5b) 

where k = 1 ~ 1 .  In  reality the energy a t  frequency w is associated with a range of 
wavenumbers centred on w / u H  (e.g. Townsend 1966; Stull 1976) but, without any 
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measurements to indicate this range, it is simplest to specify that all the energy of 
frequency w is associated with the wavenumber k. This implies the delta-function form 
of the spectrum (2 .5b) .  For example, assuming that the energy-spectrum tensor has 
the form suggested by von Karman (see $2.3)  and taking i =j = 1, then, when 

where 

( 2 . 5 ~ )  

Then from (2.5b) and ( 2 . 5 ~ )  

and, at high frequencies, w / u H  % L E ~ ,  the frequency spectrum of u1 in homogeneous 
turbulence is given by 

(2 .5e)  

I ' 2 %  = (@) A E S U ~  w - t .  

This shows that (2.5b) is consistent with ( 2 . 5 ~ ) .  

the integrals can be calculated more easily, viz. 
In the analysis that follows, we shall use a slightly modified form of (2 .5b)  so that 

X ~ ? ) ( K ,  W )  = O { ~ ) ( K )  S ( O - U H  k12). ( 2 - 5 f )  

The wavenumber k has been replaced by the horizontal wavenumber k12. The effect 
of this modification on the solution has been calculated for the case of a delta-function 
form of isotropic turbulence (see 82.3). This approximation introduces a small 
numerical factor in the magnitude ; it does not affect the form of the results. In using 
( 2 . 5 f )  to calculate X ~ ? ) ( K ,  w )  in terms of @~F)(K), we are assuming also that the 
horizontal velocity fluctuations near the interface are of order uH. This assumption 
is justified a posteriori since analysis at the interface shows that 1 . 5 4  3 2 3 u&, 
where i = 1 or 2.  

2.1.4. Method of solution 

for the velocity potential $ in the turbulent region ( 2 . l f )  
The procedure is to first solve the x, y, t Fourier transform of the Laplace equation 

(2 .6a)  

Using (2.1 e)  an expression can then be obtained for the x, y, t Fourier transform 
of the vertical velocity (8) in the turbulent region. This is described in terms of the 
x, y, z, t Fourier transform, SiH)(k, w ) ,  of the vertical velocity dH) in the homogeneous 
turbulence, where 

An expression for &(K,, K ~ ,  z, w )  in the stably stratified region is then obtained using 
( 2 . 3 ~ )  and making use of the upper boundary conditions ($2.1.2) .  

Each of the two expressions for 8 contains one unknown coefficient which is now 
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calculated by matching the two expressions for zi, a t  the interface, making use of the 
boundary conditions $2.1.3 that w and are continuous at the interface. From 
the forms for zi, we obtain forms for ti, 8 in both regions using (2.1 e ) ,  (2.2b) and ( 2 . 2 ~ ) .  
It is convenient to use the following scaling: 

where the bars denote non-dimensional quantities and, LH = LLH), the longitudinal 
integral scale of the homogeneous turbulence. For brevity we omit the asterisks. All 
the following expressions in this section are non-dimensional. 

In  the turbulent region ( z  < 0-) 

wherej = 1 or 2. In  each case the first or second integral contributes depending on 
whether w < Nor  w > N .  

In  the stratified region ( z  2 O + ) t  
fi(K1, KZ, 2, 0) 

8iH) exp [i( (N2/w2) - 19 k,, 23 

1 - i( ( P / w * )  - i)t dK, 

(2.8) 
We can now obtain expressions for the one-dimensional spectra defined as 

from 
m -  

-m 
@g$(K1) = a] 4, dK2 (i = 1, 2 or 3) ( 2 . 9 ~ )  

and also using 

S ~ H ) + ( K , W ) S ~ H ) ( K ’ , W ’ )  = X / ? ’ ( K , o ) S ( K - - K ’ ) S ( w - w ’ ) ,  (2.9b) 

where t denotes the complex conjugate, the ui are defined in (2.7) (2.8), and 
x { ~ ) ( K ,  w )  = @$?)(K) &-uH k 1 2 ) ,  as defined in (2.5f). It is now apparent why it is 
necessary to obtain a form for the joint wavenumber and frequency spectrum in the 

t The superscripts - , + show whether we are referring either to the turbulent region or to the 
stratified region at the interface. A distinction is necessary since u and v are discontinuous there. 
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homogeneous turbulence. In  the turbulent region (z < 0-), the one-dimensional 
spectrum of the vertical fluctuations is given by 

(2.10a) 

The spectra of the horizontal components, j = 1 or 2 are 

In each case both integrals contribute: the former when k,, < N, the latter when 

In the stratified region (z 3 O + ) ,  
k,, > N. 

k,, > N 
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+ J m  Jm % ( l - $ )  @~F)(K) d K 2  dK3, 

(2.11b) 

j = 1 or 2 (i.e. no summation). The former integral for each velocity component 
represents the spectrum of propagating gravity waves, the latter the spectrum of 
evanescent waves. 

( 1  +( 1 -gJ -m (N'-K$ k&Z 

2.2. General results for any spectra of the homogeneous turbulence 
Anumber of results can be obtained without specifying the turbulence spectrum. First 
we find the discontinuity in the spectra of the horizontal velocity components a t  the 

(2.12) interface : 
Q,,(K,, z = 0-) = Qj,(~l, z = 0+) + Q ~ ~ H ) ( K ~ ) ,  

wherej = 1 or 2.  Thus there is a discontinuity by an amount QjH)(~l ) ,  independent 
of the buoyancy frequency N .  At low horizontal wavenumbers since dS) = -V$, then 

Oll(K1 = 0, Z = 0-) = @ Y ) ( K 1  = o), Qz2(K2 = 0, Z = 0-) = @!jF) (K2  = 0) (2.13a) 

and Q l l ( ~ l  = 0, z = O + )  = Q 2 2 ( ~ 2  = 0, z = 0+) = 0. (2.13b) 
Thus in the low-wavenumber limit the spectra of the horizontal components are 
independent of N and z .  

I n  the limit of large stratification ( N + c o )  solutions for Q,, (j = 1 , 2 , 3 )  in the 
turbulent region reduce t o  equations (2.53-2.55) of Hunt & Graham (1978) for 
turbulence near a rigid surface. Thus in this limit the turbulence below the interface 
behaves as if i t  were confined by a rigid surface. 

I n  the stratified region, from (2 .11)  i t  follows that the gravity-wave parts of the 
spectra are independent of z. When N - t  co and z 3 O+ 

033(K1) = ' 9  (2.14a) 

(2.14b) 

and U ;  = U ;  = 0.5uL. ( 2 . 1 4 ~ )  

I n  the limit of zero stratification N+O, the solution in the non-turbulent region 
( z  2 0+) is similar to Phillips' (1955) solution for irrotational fluctuations outside a 
turbulent region. However Phillips did not consider any feedback between the two 
layers. He used only the kinematic boundary condition a t  the interface and assumed 
that the turbulence was undistorted by the fluid in the irrotational region, whereas 
the absence of rotational motion above z = 0 must reduce the velocity fluctuations 
below z = 0. The difference between these solutions only affects the magnitude of the 
irrotational fluctuations in terms of the magnitude of the homogeneous turbulence ; 
i t  does not affect the relative magnitudes of the different components of the 
irrotational velocity fluctuations. Our solution gives 

O0 K? 

@,,(K,) = Im $ @iy)(K) d K 2  d K 3  (j = 1 or 2 )  
-03 -m 12 

- -  

(2.15) 
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whereas in Phillips’ (1955) solution 
- 
ut(z = 0 )  = U H ,  

@ , , ( K l ,  Z = 0) = @$r)(K1). 

(2.16) 

Both results are independent of the form of @~F)(K) and both result in the mean square 
of the horizontal velocity components being half that of the vertical components, i.e. 

- 
uj = 0 . 5 2  ( z  2 O + , j  = 1 or 2) .  (2.17) 

2.3. Results for delta-function spectra 
To understand how different eddy sizes of the homogeneous turbulence interact with 
the stable layer, we first consider some examples of isotropic energy-spectrum tensors 
where all the energy is at a single wavenumber, i.e. 1x1 = k,. Essentially these 
represent spectra of isotropic simple waves (Tennekes 6 Lumley 1972, p. 254). In this 
case 

(2.18) 

(Batchelor 1953), where we take the energy spectra to be E ( k )  = p(k- l ) ,  and K is 
normalized on k,. Thence 

@ l F ’ ( K 1 )  = f ( 1 - K : )  (K1 < I ) ;  @ly’(K1) = 0 (K1 > 1 )  ( 2 . 1 9 ~ )  

Expressions for the one-dimensional spectra and variances near the interface 
obtained using (2.10) are presented below for z 3 O+ and N 2 1, and for N = 0 on 
z = 0. N is normalized by k ,  and uH. 

(2.20a) 

3 
4 P  @22(~1) = - (1 - K:) ( iN2 -i~: -:), 

with variances 

(2.20c) 

(2.20 d )  

(2.20 e )  

For the case discussed in this section of isotropic simple waves in the interior of the 
‘turbulent region ’, the spectra and variances can also be calculated easily for the form 
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of wavenumber and frequency spectrum X ~ ? ) ( K , O )  = @i$S(w-uH k )  (2 .5b) .  Such 
calculations can be used to  examine the effect of replacing the wavenumber k with 
k,, in the calculations in the following sections in which more realistic turbulent 
spectra are specified. 

On z 2 O+, N 2 1 using (2 .5b)  

with variances 

(2.22 a )  

(2.22 b )  

On z = 0, N = 0 using (2 .5b) ,  the solutions are identical with those of ( b )  above. 
The spectra and variances for both forms of the wavenumber and frequency 

spectrum are shown in figures 3 and 4. The difference between the solutions for the 
two forms of X ~ ? ) ( K ,  w )  is negligible except where N x 1 (in dimensional terms) when 
the difference is small. I n  this case, using w = uH k (2.5b)  results in no damping of 
the vertical motion a t  the interface, whilst using w = uH k,, (2 .5e) ,  there is some 
damping (($/u&) ( z  = 0) = 6) and consequently a small amplification in the horizontal 
components. The difference occurs because using o = uH k,, results in isotropic waves 
of wavenumber k, contributing to  all frequencies w < uH k, and frequencies 
w < uH k, are damped by the stratification. However, when o = uH k the single 
frequency w = uH k,  contributes. 

For both forms of x ~ ~ ) ( K , w )  when N < 1 (= 0 in our case) and N 4 1 vertical 
motions are much reduced. The longitudinal spectra show maximum excitation at 
the highest frequencies excited, Kl/k,  x 1 ,  while the transverse fluctuations are 
greatest at low frequencies, which is a similar result to  that of Hunt & Graham (1978) 
for zero-shear turbulence near a wall. The kinetic energy of the wave motion in the 
stratified layer is independent of N for a given k,, when, in dimensional terms, 

q2(z > 0 )  = &I&, ( 2 . 2 3 ~ )  

q y z  = 0-) = q&. (2.23 b )  

N > UH k,; ViZ. 

2.4.  Forms of the energy-spectrum tensor 

I n  order to  obtain specific results for the changes in the variances and spectra near 
the interface, the integrals in (2.9)-(2.12) require specification of the energy-spectrum 
tensor @~F)(K) of the homogeneous isotropic turbulence. We consider two different 
expressions, which have the same general form, namely 

and which have one-dimensional spectra given by 

(2.24) 

(2.25) 

In  the von Karman form p = g, g ,  = g!/n = 0.1955, g 2  = ~ r ~ ( % ) / r ~ ( $ )  = 0.558, 
g ,  = 55gl/36n, whereas the Townsend form requires p = 1, g ,  = l / n ,  g 2  = 1 and 
g ,  = 2g, /n.  The von Karman spectrum generally gives a more accurate representation 
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I 

of turbulence, reducing to the Kolmogorov spectrum @~F)(K~) = g l / K t  for K~ 9 g,. 
However, the Townsend spectrum enables the integrals to be calculated more easily. 
We shall present analytical expressions obtained using the von K6rman spectrum in 
the main body of the text, whilst expressions obtained using Townsend's spectrum 
are set out in the Appendix. 
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1 N 10 
~ 

U H  kw 

FIGURE 4. Variances at z = 0 for isotropic simple waves in the 
free stream. The notation is that of figure 3. 

2.5.  Results for vow Karman and Townsend spectra 

2.5.1. One-dimensional spectra 

Von KarmcEn form: For this form of the spectra analytical expressions are 
obtainable for the limits K ~ + O  and N 9 1 for z 2 O+.  The suffixes g and e refer to  
the contributions to the spectra from the different frequency ranges : 

(i) w < N (gravity waves in stratified layers), 
(ii) w > N (evanescent waves in the stratified layer). 

( 2 . 2 6 ~ )  

where 

xqdx 
and I ($)  x 0.226, 

[ 1 +  ( 1  -xz)qz' 

( 2 . 2 7 ~ )  

(2.27 b )  

(2.28 b )  

@EZ(K1 = 0 , Z  = o', N 9 1)  = - ( I ( $ )  8Y - I (! ) )  ( 2 . 2 8 ~ )  fi 
z 0.023/N! 

Townsend form: For this form of spectra, (2 .10)  and (2.1 1 )  can be integrated exactly 
for all K~ and for N < w and z 2 O+. The analytical expressions are set out in the 
Appendix. 

Computed spectra using both the von Karmin and Townsend forms are plotted 
as functions of z and N in figure 5. Note how, a t  z = 0,  as N increases the value of 
K~ for which Q 3 3 ( ~ 1 )  is a maximum slightly increases, a result of the fact that the 

(since I(!) = 0.127) .  
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FIGURE 5. For caption see page 490. 

minimum reactance to vertical motion by the stratified layer occurs when k,, = N 
(in dimensional terms, k,, uH = N). This reactance increases rapidly with decreasing 
k,, when k,, < N because, the lower the wavenumber, the greater the disturbance 
would extend into the stratified region and the greater the energy required to make 
such a disturbance. The changes in @33(Kl) as a function of z show that there is a rapid 
fall-off, as z increases, in the high-frequency contribution for K, > N ;  this is a result 
of the evanescent term decaying rapidly with height. At heights greater than about 
an integral scale above the interface ( z  2 LH), the spectra are almost entirely due 
to gravity waves, which in our inviscid model do not vary with z. (If, as is likely, 
absorption occurs at another level, that does not affect the solution near the 
interface.) These gravity-wave spectra have very sharp fall-offs in the high-frequency 
range. The measurements of Caughey & Palmer (1979) shown in the figures are 
discussed in detail in $3.2. 
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FIGURE 5. Calculated one-dimensional spectra for two forms of spectrum of homogeneous 
turbulence in the free stream compared with the experimental data of Caughey & Palmer (1979) 
where appropriate: -, von K b m h  spectrum ; ---------, Townsend spectrum. (a) Normal 
component a t  z = 0 for different values of NL,/u,. (b) Longitudinal component a t  z = 0-. ( c )  
Transverse component a t  z = 0-. (d) Normal component for NL,/u, = 6 .  Measured: 0 ,  z = -0.12, 
( x  -0.2LH); x , z = -0.42, ( xO.8LH). The interface is a t  z = 0 in our notation. (e) Longitudinal 
component. (f) Transverse component. (8 )  Normal component NLH/uH = 3. 
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2.5.2. Variances 

and for the evanescent contribution on z = 0. 
Analytical expressions can be obtained for the gravity-wave contribution for z 2 0 

Von Karman form: N % 1 

(2.29 a )  

(since I (  -4) w 0.442). (2.29b) 

Note that the results ( 2 . 2 9 ~ ’  b)  depend only on the form of the high-frequency part 
of the wavenumber-frequency spectrum which is universal and independent of its 
form at low wavenumbers. On z = 0 ( 2 . 2 9 ~ )  and (2.29b) reduce in dimensional terms 
to 0 (2.29 c )  

The coefficient is determined by the definition of the von Kbrman spectrum. Long 
(1978), in his theory of mixing in stably stratified fluid, finds that at z = 0 

- 1 0.324 
wE(z = 0) = (XI( -5) ~) N’ w - a N !  

- - _  
0.873u!x NL, * 

w2 = w;+w; w 

(2.29 d )  

This result is given by our theory if a ‘Lagrangian’ rather than an ‘Eulerian’ 
frequency spectrum is used. If our expression for 3 in (2 .29~)  is used to estimate the 
entrainment rate by using Long’s hypothesis, then the entrainment would be 
increased and be closer to observed values. 

It is interesting that a similar expression to (2 .29~)  can be obtained on simple 
physical grounds. One assumes that, for large enough stratification, the turbulence 
is a function only of the ‘Eulerian’ frequency spectrum of the homogeneous 
turbulence at frequency N and of N itself, i.e. 

wa = f($”(w = N ) ,  N ) .  
- 

(2.30a) 

Then, dimensional analysis of this expression leads to 

- CUg w2 = 
(NL/U,)b’ 

where c is a constant and the expression is similar to (2 .29~) .  
On z = 0+, 

_ _  1 1 0.549 
N! 2 Ni’ u;,v; = i -hny-  w 

(2.30 b )  

(2.31 a )  

(since I ($ )  w 0.165). 
0.101 
=7 

Analytical expressions for the Townsend form of @iF)(x) are shown in the Appendix. 
The computed variances are shown in figure 6. Note that the vertical variance 



492 D. J .  Carruthers and J .  C. R. Hunt 

2 

Z - 
LH 

I 

0 

- 1  

- 2  

i 

z - 
LH 

1 

( 

- 1  

-2  

6 

NLH 1 -= 
UH 

FIGURE 6. For caption see facing page. 
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FIGURE 7. Turbulent kinetic energy qz, (a) as a function of z for the von Karman spectrum of 
free-stream turbulence, (b) a t  z = O + :  -, von KarmBn spectrum; ------ , Townsend spectrum. 

increases with N for small N with a maximum a t  N x 2 when s / u &  x 0.35 and the 
frequency of the energy-containing eddies corresponds approximately to N .  The von 
Karman spectrum results in greater vertical fluctuations for N % 1 since this 
spectrum has more energy in the smallest eddies. For the Townsend spectrum the 
contribution to the variances from frequencies w > N and w < N have been plotted 
separately in figures 6 ( a , b ) .  For the case of vertical variances the evanescent 
contribution (w > N )  decreases monotonically with NLH/uH whilst the gravity-wave 
contribution reaches a maximum at N L H / u H  x 5. Measurements of Caughey & 
Palmer (1979) are plotted on the curves where appropriate. These are discussed in 
$3.2. 

Plots of the total kinetic energy are shown in figure 7. Note that q2(z = 0-) < qk 
unless N + c o .  Also, when in dimensional terms NLH/uH < 3, q2 decreases mono- 
tonically with increasing z, whereas when NLH/uH > 3 there is a minimum in q2 at 
z/LH x -0.2. 

FIGURE 6. Calculated variances for two forms of turbulence compared with the experimental 
observations of Caughey & Palmer (1979) where appropriate : -, voii Karmhn spectrum ; -----, 
Townsend spectrum. (a) Normal component at z = 0: ........., asymptotic form for NL,/u, B 1, 
von Karman spectrum. (b) Longitudinal and transverse components at z = O + .  ( c )  Normal 
component EM a function of z/L,  for different NL,/u,. Measured: D, NL,/u, = 6. ( d )  Calculated 
longitudinal/transverse components. Measured component : H I  NLH/uH = 6. 
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2.5.3. Integral scales 

lytically on z = 0- for N % l ,  for the Von Karman spectrum: 
These are defined as Lpi) = (l/G)j:", u&x) ut(x+r)  dr and can be calculated ana- 

(2.32 a )  

(2.32 b )  

where S = b(1 -g(I( - i ) - I ( i ) ) )  x 0.298, and L, = L p )  for the homogeneous turbu- 
lence. Also for N & 1 : 

In  the limit N 9 1 the theory predicts that a t  z = 0 

(2.33) 

(2.34) 

and the integral scale decreases a t  a faster rate with N than the vertical velocity 
variance. 

The computed integral scales are plotted as functions of N and z in figure 8. Only 
the longitudinal scale of the vertical fluctuations LLw) is seen to vary significantly with 
stratification. Also plotted in figure 8(c )  is the wavelength h g )  at which K ,  @33(~1) 

is a maximum. 

2.5.4. Wave-energy flux in the stratiJied region 
The vertical energy flux in the stratified layer is given by 

The flux is independent of z and for N % 1 is given by: 

(in the von Karman form) 
1 2.20 F -=- 

W 3 YN$ ,i@> 
(or in dimensional form) 

and for the Townsend spectrum 
3 

2N 
Fw = -(ln2N-l). 

(2.36 a )  

(2.363) 

(2.37) 

The computed fluxes and the asymptotic forms for N % 1 are shown in figure 9. An 
estimate of the importance to the convective boundary-layer development of the 
loss of energy due to gravity waves can be made by comparing the rate of energy 
(power P) lost by the turbulent fluid as wave energy t o  the energy-dissipation rate 
in the boundary-layer depth zi 

(2.38) P w a w s  - Fw P.L 
Paissipation CPZi ' 
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FIGURE 8. Integral scales and wavelengths. (a) Integral scales on z = 0- as a function of NL,/u,. 
( b )  Vertical scales Lkw) as a function of z. (c) The wavelength Ag) at which K~ @33(~1) is a maximum 
compared with the experimental data of Caughey & Palmer: NL,/u, = 6. The circles and triangles 
are from different data sets: 0 ,  July 6; A, July 8. 
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1 .o 10 NLH 10' 1 0 0  

U H  

FIGURE 9. Calculated vertical wave flux in the stratified layer; -, von Karman spectrum; 
______ , Townsend spectrum of free-stream turbulence. Asymptotic form for NL,/u, + 1 ; ........., 
von Karman spectrum. 

where E is the energy-dissipation rate. Taking zi = 2L, and e = u&/LH leads to 

- 

(2.39) 

So, since the computations show Fw < 0.2, the loss ofenergy by waves is approximately 
an order of magnitude lower than the loss by dissipation throughout the depth of 
the boundary layer. However, the loss of energy by waves is of sufficient magnitude 
to have an important effect on the dynamics of the boundary layer because it is 
comparable with the energy dissipated near the inversion; hence there is less energy 
available for deepening the layer. 

3. Discussion 
3.1. Limits of the model 

In  the Introduction we suggested that the general class of turbulent flows confined 
by stratification can be subdivided into three main types: (i) the stable layer is 
uniformly stratified and there is no mean shear, (ii) there is an intensely stratified 
layer marking the edge of the turbulent layer with no shear, (iii) either of the first 
two cases with mean shear. The theory described in this paper is a model of type (i) 
only, so that comparisons with laboratory and field data are restricted to this 
situation. 

The theory does not include the effect on the measured spectra and variances of 
the undulating motions a t  the interface caused by eddies impinging onto it. The effect 
of this on time-averaged measurements at a point is to blur the discontinuity in the 
structure of the horizontal components of turbulence across the interface. Gartshore, 
Durbin & Hunt (1983), in their use of rapid-distortion theory to describe the structure 
of motions in a shear layer outside a turbulent layer, estimated the effect by assuming 
that the position of the interface deviated from its mean position according to a 
Gaussian probability distribution. 

Waves impinging on the interface from aloft are not considered by the theory. These 
have been described by Delisi & Orlanski (1975). They found that there was a 
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maximum in wave amplitude near the interface where incident and reflected waves 
interact. The amplitudes were small unless there was a thin region of stronger 
stratification marking the edge of the neutral layer; in this case wave breaking was 
observed to occur and large-amplitude waves were predicted by their theory. 

3.2. Comparison with experiment and numerical simulation 
There are few detailed observations and numerical simulations of structures of 
turbulence near an interface between a turbulent layer and a single uniformly 
stratified layer and the range of the non-dimensional buoyancy frequency is small ; 
typically in the atmosphere N L H / U ,  x 6-8. Specific comparisons are made with the 
balloon measurements of Caughey & Palmer (1979) made in the dry atmospheric 
boundary layer, the laboratory experiment of Willis & Deardorff (1974) and the 
numerical simulations of DeardorR (1980)' for his cases 1, 2 and 3. However, before 
discussing the comparisons we examine the extent to which the assumptions of the 
theory are satisfied in the experiments and numerical simulations. 

3.2.1. Conditions of the theory 
(1) Energy dissipation rate. The theory requires &/az  = 0 or, more precisely, 

(Hunt 1984). This condition is well satisfied by the laboratory experiments of Willis 
& DeardorR and by the numerical simulations of Deardorff, where a balance of the 
turbulent-kinetic-energy equation requires &/az x 0. In Caughey & Palmer's 
measurements (l/e)l&/i3zl x 

(2) Anisotropy. The measurements of Caughey & Palmer show that the variances 
of the turbulent components in the centre of the boundary layer are approximately 
equal : 

where w$ = g(w"lo/8) zi, w"10 is the surface heat flux, and zi the depth of the boundary 
layer. This does not show that the turbulence is isotropic since boundary-layer 
convection usually consists of energetic upward motion of relatively small extent 
penetrating larger regions of slowly descending air (Lenschow & Stephens 1980)' 
which is why the third-order moments (2) are positive. However, the observed 
spectra do show the small-scale isotropy and universal spectral form assumed in the 
theory. 

The computer simulations of DeardorE and laboratory experiments of Willis & 
Deardorff showed an anisotropic turbulent structure with 

- -  
w2 x u2 x 0.4w2,, (3.2) 

Thus for these cases comparisons with the theory can only be approximate. 
( 3 )  Temperatureldensity gradient in  the neutral layer. The theory assumes that the 

turbulent region is sufficiently well mixed for the potential temperature to be 
uniform. However, entrainment of fluid from the stable layer is observed to cause 
low levels of stratification in the upper half of the turbulent region with, for the 
experiments and simulations referred to, buoyancy frequency N 5 4 x lop3 s-l. 
This stratification may be expected to have a dynamic effect on scales L for which 
uH/NL < 1. This inequality is only satisfied for scales larger than the scale over which 
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Case 

- - 
w”wi (2 = 0 )  w”w: (2 = 0.1LH) 

Observation/ Observation/ 
NL,/u, simulation Theory simulation Theory 

Willis & Deardorff experiment 
1 7.0 0.26 0.21 0.39 0.16 
2 10.0 0.18 0.16 0.09 0.1 1 

1 8.0 0.2 0.23 
2 7.1 0.3 0.24 
3 8.6 0.32 0.22 

Deardorff numerical simulation 

TABLE 1 .  Vertical variances. Comparisons of the theory with the experiments of 
Willis & Deardorff and the numerical simulations of Deardorff. 

the temperature gradient occurs, so dynamic effects are likely to  be small and neglect 
of stratification in the turbulent layer is justified. The nonlinear effects caused by 
the interaction of eddies and fluctuating temperature gradients near the heated 
surface are discussed by Hunt (1984). 

3.2.2. Comparison 

( 1 )  Spectra. The measured spectra of Caughey & Palmer are compared with the 
predictions of the theory in figures 6 (d-f ). The non-dimensional buoyancy frequency 
NL,/uH = 6, where we have taken L ,  = ;zi, where zi is the depth of the boundary 
layer ( z  = 0 a t  the boundary-layer top in our notation and the Earth’s surface is a t  
z = -zi). For this case the atmospheric profile is given by Palmer, Caughey & Whyte 
(1979). 

In  his comparison of theory with atmospheric data, Hunt (1984) scales his results 
with the lengthscale Liw), the vertical integral scale in the centre of the convective 
boundary layer, and assumes Liw) = i z ,  in agreement with atmospheric measurements. 
This assumption is consistent with our assumption (LH = tii) since LH = L p )  and 
in isotropic turbulence L p )  = 2Liw) = 2Lp). 

The theoretical and experimental curves are in qualitative agreement, with the 
sharp fall-offs in the high-frequency ( K ~  % N/uH) parts of the spectra for z = zi; the 
residual high-frequency contribution in the measurements at z = 0.42, is probably 
due to instrumental noise. The spectra of E. E. Gossard (private communication) 
calculated from Doppler radar measurements also show the same features in a stable 
layer well above the interface, although in that case the theory presented here is only 
appropriate in the deep stable layer some distance above the top of the mixed layer 
where there was a thin layer of intense stratification. 

( 2 )  Variances. The marked anisotropy of the boundary-layer turbulence in the 
experiments of Willis & Deardorff and in the numerical simulations of Deardorff 
makes precise comparison with the theory difficult ; however, in all cases the 
observations are in agreement with the trends of the theory, with the vertical 
variances decreasing from their maximum values near the centre of the boundary 
layer as the interface is approached. The horizontal components show little variation 
over the entire mixed-layer depth, but there is some evidence of a small increase near 
the interface. Figures S ( c )  and (d )  show the measured values of Caughey & Palmer 
compared with the theory. The smooth profile in the time-averaged horizontal 
variance across the interface is caused by the undulating motions of the interface. 
Table 1 shows calculated and measured values of g / u H  at the interface. It is assumed 
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that uH = wo, where wo is the r.m.s. value of the observed vertical velocity at the 
centre of the mixed layer. 

( 3 )  Lengthscales. Figure 8(c)  shows computed values of h g )  (the wavelength at 
which ~ ~ t 9 ~ ~ ( ~ ~ )  is a maximum) and these are compared with the observations of 
Caughey & Palmer. 

3.3. c0nG1usi0ns 

The linear theory developed in this paper describes the main features of the 
fluctuating velocities observed near an interface between a turbulent region and a 
stably stratified layer. A number of assumptions have been made in the theory that 
further experiments or numerical computation could test, viz. the relation between 
the Eulerian space-time spectra and the Eulerian space spectra, and the fact that 
the effect of the interface on the turbulent layer is to produce irrotational fluctuations. 
The most important physical parameter in the system is identified as the non- 
dimensional frequency NLH/UH;  most results can be expressed in terms of this 
parameter. The important results of the theory are presented below. 

(i) The vertical fluctuationsdecrease at the interface compared with their magnitude 
in the interior of the turbulent region for all NLH/UH, but are greatest at the interface 

This is a slower rate of decrease with stratification than that suggested by Long (1978). 
When NLH/u,+O, $/u&+0.25. 

(ii) In  the turbulent region at the interface the horizontal motion for large 
NLH/uH % 1 is given by G/u& x 1.5-0.4(uH/N&). (3 = f 2  throughout both 
layers.) When NL,/u,+O, f2/u&+ 1.125. There is a discontinuity in T2 independent 
of N given by A($) = u&. This discontinuity may lead to small-scale Kelvin- 
Helmholtz instabilities and entrainment by mechanism ( 1 )  described in the 
introduction. 

(iii) In  the stratified layer, waves with frequency w > N decay rapidly with 
distance z from the interface and their contribution is negligible when z/LH > 1. In  
this inviscid model, low-frequency waves (w < N) do not decay with height. Thus the 
high-frequency parts of the spectra fall off sharply, while in the low-frequency range 
there is no change with height. 

(iv) At the interface the value of the longitudinal wavenumber at which the 
spectrum of vertical velocities reaches a maximum increases with increasing stratifi- 
cation. This occurs because eddies least affected by the stratified layer and hence those 
eddies which penetrate most easily into the stratified layer are those with a frequency 
0 %  N. It is likely that these eddies are important in the entrainment process, 
particularly in the third of the mechanisms described in the introduction. 

(v) The vertical integral scale is smaller at  the interface than in the interior of the 
turbulent region for all values of the stratification. A t  the interface i t  is a maximum 
when NLH x 1, when L&?’)/LH x 0.65, while for NLH/u, %’ 1, Lkw)/LH x 2.71 
( u H / N L H ) .  The horizontal integral scales show little variation with stratification. 

(vi) The wave energy flux (Fw) reaches a maximum of Fw x 0 . 2 ~ ~ 3 ,  when 
N L H / u H  x 6; this value of the parameter is often observed in the atmosphere. When 
N L H / u H  % 1 the flux decreases with increasing stratification and Fw x 2.2 (puk)  
( u H / N L I I ) f .  The loss of energy by waves may have an important effect on the 
dynamics of the boundary layer. 

During the work described here D. J .  C. was supported by a fellowship provided by 
the Natural Environment Research Council. 

for NL,/UH X 2 when $ /U& X 0.35. When NLH/ P I ,  $ / U k  X 0 . 8 7 ( u ~ / N & ) f .  
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Appendix. Analytic expressions 

The one-dimensional spectra and variances can be calculated for z 2 0+, when 
w > N and for z = O+ when K~ = 0 and N % 1. The integral scales can be calculated 
analytically in the turbulent region only on z = 0- when N B 1. 

(i) One-dimensional spectra : 

@!3(~1, z 2 O+)  

where a2 = ( W - ~ ? ) / ( w + i ) .  
3 

@ g 3 ( ~ 1  = 0 ,z  = O+,N $- 1) = - 2nN2 (ln2-3, (A 2) 

Q?,(K, = 0, z = 0+) = 0, (A 4) 

3 
4N 

= -(lnN-3.25). 

Lkw)(N % 1, z = 0+) = -(lnN-2 ln2-v) 

3 
4N 
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